12 research outputs found

    Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation

    Full text link
    Language-conditioned policies allow robots to interpret and execute human instructions. Learning such policies requires a substantial investment with regards to time and compute resources. Still, the resulting controllers are highly device-specific and cannot easily be transferred to a robot with different morphology, capability, appearance or dynamics. In this paper, we propose a sample-efficient approach for training language-conditioned manipulation policies that allows for rapid transfer across different types of robots. By introducing a novel method, namely Hierarchical Modularity, and adopting supervised attention across multiple sub-modules, we bridge the divide between modular and end-to-end learning and enable the reuse of functional building blocks. In both simulated and real world robot manipulation experiments, we demonstrate that our method outperforms the current state-of-the-art methods and can transfer policies across 4 different robots in a sample-efficient manner. Finally, we show that the functionality of learned sub-modules is maintained beyond the training process and can be used to introspect the robot decision-making process. Code is available at https://github.com/ir-lab/ModAttn.Comment: 2022 Conference on Robot Learning (CoRL

    Theory of Mind for Multi-Agent Collaboration via Large Language Models

    Full text link
    While Large Language Models (LLMs) have demonstrated impressive accomplishments in both reasoning and planning, their abilities in multi-agent collaborations remains largely unexplored. This study evaluates LLM-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks, comparing their performance with Multi-Agent Reinforcement Learning (MARL) and planning-based baselines. We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents. Our results reveal limitations in LLM-based agents' planning optimization due to systematic failures in managing long-horizon contexts and hallucination about the task state. We explore the use of explicit belief state representations to mitigate these issues, finding that it enhances task performance and the accuracy of ToM inferences for LLM-based agents.Comment: Accepted to EMNLP 2023 (Main Conference

    Explainable Action Advising for Multi-Agent Reinforcement Learning

    Full text link
    Action advising is a knowledge transfer technique for reinforcement learning based on the teacher-student paradigm. An expert teacher provides advice to a student during training in order to improve the student's sample efficiency and policy performance. Such advice is commonly given in the form of state-action pairs. However, it makes it difficult for the student to reason with and apply to novel states. We introduce Explainable Action Advising, in which the teacher provides action advice as well as associated explanations indicating why the action was chosen. This allows the student to self-reflect on what it has learned, enabling advice generalization and leading to improved sample efficiency and learning performance - even in environments where the teacher is sub-optimal. We empirically show that our framework is effective in both single-agent and multi-agent scenarios, yielding improved policy returns and convergence rates when compared to state-of-the-art methodsComment: This work has been accepted to ICRA 202

    Long-Horizon Dialogue Understanding for Role Identification in the Game of Avalon with Large Language Models

    Full text link
    Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: https://sstepput.github.io/Avalon-NLU/Comment: Accepted to the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP, Findings of the Association for Computational Linguistics

    Characterizing Out-of-Distribution Error via Optimal Transport

    Full text link
    Out-of-distribution (OOD) data poses serious challenges in deployed machine learning models, so methods of predicting a model's performance on OOD data without labels are important for machine learning safety. While a number of methods have been proposed by prior work, they often underestimate the actual error, sometimes by a large margin, which greatly impacts their applicability to real tasks. In this work, we identify pseudo-label shift, or the difference between the predicted and true OOD label distributions, as a key indicator to this underestimation. Based on this observation, we introduce a novel method for estimating model performance by leveraging optimal transport theory, Confidence Optimal Transport (COT), and show that it provably provides more robust error estimates in the presence of pseudo-label shift. Additionally, we introduce an empirically-motivated variant of COT, Confidence Optimal Transport with Thresholding (COTT), which applies thresholding to the individual transport costs and further improves the accuracy of COT's error estimates. We evaluate COT and COTT on a variety of standard benchmarks that induce various types of distribution shift -- synthetic, novel subpopulation, and natural -- and show that our approaches significantly outperform existing state-of-the-art methods with an up to 3x lower prediction error

    Learning Interactive Behaviors for Musculoskeletal Robots Using Bayesian Interaction Primitives

    Get PDF
    Musculoskeletal robots that are based on pneumatic actuation have a variety of properties, such as compliance and back-drivability, that render them particularly appealing for human-robot collaboration. However, programming interactive and responsive behaviors for such systems is extremely challenging due to the nonlinearity and uncertainty inherent to their control. In this paper, we propose an approach for learning Bayesian Interaction Primitives for musculoskeletal robots given a limited set of example demonstrations. We show that this approach is capable of real-time state estimation and response generation for interaction with a robot for which no analytical model exists. Human-robot interaction experiments on a \u27handshake\u27 task show that the approach generalizes to new positions, interaction partners, and movement velocities.IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS2019), November 4 - 8, 2019, Macau, Chin
    corecore